Anatomy of the Heart: Difference between revisions

Jump to navigation Jump to search
m
Reverted edits by NiloferT (talk) to last revision by Drj
No edit summary
m (Reverted edits by NiloferT (talk) to last revision by Drj)
(13 intermediate revisions by 2 users not shown)
Line 12: Line 12:


==Position of the heart==
==Position of the heart==
[[Image:Figure 2.jpg|300px|left|thumb|'''Figure 2.'''<br>
[[Image:Figure 2.svg|300px|left|thumb|'''Figure 2.'''<br>
The long axis of the heart is at an angle to the long axis of the body. Approximately a third of the heart is to the right of the midline of the sternum and the remainder is to the left of the midline.
The long axis of the heart is at an angle to the long axis of the body. Approximately a third of the heart is to the right of the midline of the sternum and the remainder is to the left of the midline.
]]
]]


[[Image:Figure 3.jpg|thumb|300px|right|'''Figure 3.'''<br>
[[Image:Figure 4.jpg|thumb|300px|right|'''Figure 4.'''<br>
'''A.''' This frontal view shows the right and left surfaces of the heart. The left anterior descending coronary artery buried in epicardial fat marks the plane of the ventricular septum.
<br>'''B.''' The obtuse and acute margins of the ventricles are demonstrated in this apical view.]]
 
[[Image:Figure 3.svg|thumb|300px|left|'''Figure 3.'''<br>
'''A.''' Viewed from the front, the right atrium and right ventricle overlaps the left atrium and left ventricle. The atrial chambers are to the right of their respective ventricular chambers.
'''A.''' Viewed from the front, the right atrium and right ventricle overlaps the left atrium and left ventricle. The atrial chambers are to the right of their respective ventricular chambers.
<br>'''B.''' The four cardiac valves are at different levels and different planes with the pulmonary(P) valve situated the most cephalad. The aortic(A) valve is wedged between the tricuspid(T) and mitral(M) valves.]]  
<br>'''B.''' The four cardiac valves are at different levels and different planes with the pulmonary(P) valve situated the most cephalad. The aortic(A) valve is wedged between the tricuspid(T) and mitral(M) valves.]]  
Line 25: Line 29:


When the pericardium is removed, the major part of the heart visible from the front is the ventricular mass. Here, the morphologically right ventricle occupies the greater part (Figure 3). The left ventricle appears only as a narrow slip along the left cardiac border. The shape of the heart is generally likened to a pyramid. The apex points downwards, forwards and to the left while the base faces posteriorly and to the right. While the cardiac apex is usually represented by the vortex of the left ventricle, the cardiac base is less well defined owing to differences in definition.  
When the pericardium is removed, the major part of the heart visible from the front is the ventricular mass. Here, the morphologically right ventricle occupies the greater part (Figure 3). The left ventricle appears only as a narrow slip along the left cardiac border. The shape of the heart is generally likened to a pyramid. The apex points downwards, forwards and to the left while the base faces posteriorly and to the right. While the cardiac apex is usually represented by the vortex of the left ventricle, the cardiac base is less well defined owing to differences in definition.  
[[Image:Figure 4.jpg|thumb|300px|center|'''Figure 4.'''<br>
'''A.''' This frontal view shows the right and left surfaces of the heart. The left anterior descending coronary artery buried in epicardial fat marks the plane of the ventricular septum.
<br>'''B.''' The obtuse and acute margins of the ventricles are demonstrated in this apical view.]]


The anatomical base is formed mainly by the left atrium receiving the pulmonary veins and to a small extent by the posterior part of the right atrium. The base in clinical practice, however, refers to the portion of the heart near the parasternal parts of the second intercostal spaces. The cardiac long axis, therefore, lies in a line drawn from the left hypochondrium towards the right shoulder. This orientation deviates considerably from the long axis of the body. Furthermore, the position of the cardiac septum at about 45º to the median brings the ‘right heart’ structures anterior to the ‘left heart’ structures (Figure 3A). The ventricles are situated inferior and leftward relative to their corresponding atria.  
The anatomical base is formed mainly by the left atrium receiving the pulmonary veins and to a small extent by the posterior part of the right atrium. The base in clinical practice, however, refers to the portion of the heart near the parasternal parts of the second intercostal spaces. The cardiac long axis, therefore, lies in a line drawn from the left hypochondrium towards the right shoulder. This orientation deviates considerably from the long axis of the body. Furthermore, the position of the cardiac septum at about 45º to the median brings the ‘right heart’ structures anterior to the ‘left heart’ structures (Figure 3A). The ventricles are situated inferior and leftward relative to their corresponding atria.  
Line 44: Line 44:


==The morphologically left atrium==
==The morphologically left atrium==
[[Image:Figure 6.jpg|thumb|300px|center|'''Figure 6.'''<br>
[[Image:Figure 6.jpg|thumb|300px|right|'''Figure 6.'''<br>
'''A.'''  This view from the left-lateral aspect shows the finger-like left atrial appendage with the left atrium situated posteriorly. The left ventricle tapers to a rounded apex.  
'''A.'''  This view from the left-lateral aspect shows the finger-like left atrial appendage with the left atrium situated posteriorly. The left ventricle tapers to a rounded apex.  
<br>'''B.'''  This section through the aortic root and mitral valve displays the left atrial aspect of the septum enface. The crescentic edge (arrow) of the fossa valve has not sealed completely resulting in a PFO. The asterisk marks the location of the transverse pericardial sinus.]]
<br>'''B.'''  This section through the aortic root and mitral valve displays the left atrial aspect of the septum enface. The crescentic edge (arrow) of the fossa valve has not sealed completely resulting in a PFO. The asterisk marks the location of the transverse pericardial sinus.]]
Line 51: Line 51:


==The morphologically right ventricle==
==The morphologically right ventricle==
[[Image:Figure 7.jpg|thumb|300px|right|
[[Image:Figure 7.jpg|thumb|300px|left|'''Figure 7.'''<br>
'''A.''' The right ventricle is opened to show the septum and the muscular crest separating tricuspid from pulmonary valves. The moderator band (open arrow) extends from the foot of the septomarginal trabeculation to the free wall of the right ventricle. Coarse trabeculations fill the apical component.
'''A.''' The right ventricle is opened to show the septum and the muscular crest separating tricuspid from pulmonary valves. The moderator band (open arrow) extends from the foot of the septomarginal trabeculation to the free wall of the right ventricle. Coarse trabeculations fill the apical component.
<br>'''B.''' This close-up view of the tricuspid valve at the commissure between septal and antero-septal leaflets shows the annulus (broken line) crossing the membranous septum (dots) dividing it into atrioventricular(av) and interventricular(iv) components.]]
<br>'''B.''' This close-up view of the tricuspid valve at the commissure between septal and antero-septal leaflets shows the annulus (broken line) crossing the membranous septum (dots) dividing it into atrioventricular(av) and interventricular(iv) components.]]
Line 58: Line 58:


==The morphologically left ventricle==
==The morphologically left ventricle==
[[Image:Figure 8.jpg|thumb|300px|right|
[[Image:Figure 8.jpg|thumb|300px|right|'''Figure 8.'''<br>
'''A.''' The left ventricle is opened through its outflow tract into the aortic valve. The aortic valve leaflets are in fibrous continuity with the anterior leaflet of the mitral valve. The fibrous continuity is expanded at the right and left fibrous trigones. The right trigone(asterisk) is the landmark for the atrioventricular conduction bundle. Note how the thickness of the left ventricular wall diminishes remarkably at the apex (open arrow).
'''A.''' The left ventricle is opened through its outflow tract into the aortic valve. The aortic valve leaflets are in fibrous continuity with the anterior leaflet of the mitral valve. The fibrous continuity is expanded at the right and left fibrous trigones. The right trigone(asterisk) is the landmark for the atrioventricular conduction bundle. Note how the thickness of the left ventricular wall diminishes remarkably at the apex (open arrow).
<br>'''B.''' This dissection shows the central location of the aortic valve. L, N and R are the left-coronary, non-coronary and right-coronary aortic sinuses respectively.]]
<br>'''B.''' This dissection shows the central location of the aortic valve. L, N and R are the left-coronary, non-coronary and right-coronary aortic sinuses respectively.]]
Line 79: Line 79:


==The coronary circulation==
==The coronary circulation==
[[Image:Figure 9.jpg|thumb|300px|right|Diagram showing the right (RCA) and left (LCA) coronary arteries and their main ventricular branches. The left anterior descending (LAD) and posterior descending (PDA) coronary arteries mark the anterior and posterior margins of the ventricular septum.]]
[[Image:Figure 9.svg|thumb|300px|right|'''Figure 9.'''<br>
Diagram showing the right (RCA) and left (LCA) coronary arteries and their main ventricular branches. The left anterior descending (LAD) and posterior descending (PDA) coronary arteries mark the anterior and posterior margins of the ventricular septum.]]


As mentioned previously, the left and right coronary arteries emerge from the left and right coronary sinuses respectively. Usually the arteries arise from within the sinus just beneath or at the level of the aortic bar (sinutubular junction). In the left sinus there is usually a single orifice but in the right sinus it is usual to find multiple orifices where the early branches of the right coronary artery take direct origin. The main coronary arteries pass within the fatty tissues of the atrioventricular and interventricular grooves. The left coronary has a short main stem that branches into the anterior descending and circumflex arteries (Figure 9). The circumflex runs in the left atrioventricular groove and the right coronary artery runs in the right atrioventricular groove to variable lengths. From the atrioventricular groove, the encircling arteries give origin to ventricular and atrial branches. An early atrial branch is the sinus node artery which arises slightly more frequently from the right than the left coronary artery. It usually ascends the interatrial musculature to reach the terminal groove but recent evidence has shown a more variable course. In the majority of hearts the posterior descending artery, which runs in the posterior interventricular groove, is a branch from the right coronary artery and this is termed 'right dominance'. In a little under 10% of hearts the posterior descending is a branch of the circumflex giving 'left dominance'. A 'balanced' circulation is seen when both right and left coronary arteries give rise to parallel posterior descending branches. The artery to the atrioventricular node arises from the dominant artery at the cardiac crux.  
As mentioned previously, the left and right coronary arteries emerge from the left and right coronary sinuses respectively. Usually the arteries arise from within the sinus just beneath or at the level of the aortic bar (sinutubular junction). In the left sinus there is usually a single orifice but in the right sinus it is usual to find multiple orifices where the early branches of the right coronary artery take direct origin. The main coronary arteries pass within the fatty tissues of the atrioventricular and interventricular grooves. The left coronary has a short main stem that branches into the anterior descending and circumflex arteries (Figure 9). The circumflex runs in the left atrioventricular groove and the right coronary artery runs in the right atrioventricular groove to variable lengths. From the atrioventricular groove, the encircling arteries give origin to ventricular and atrial branches. An early atrial branch is the sinus node artery which arises slightly more frequently from the right than the left coronary artery. It usually ascends the interatrial musculature to reach the terminal groove but recent evidence has shown a more variable course. In the majority of hearts the posterior descending artery, which runs in the posterior interventricular groove, is a branch from the right coronary artery and this is termed 'right dominance'. In a little under 10% of hearts the posterior descending is a branch of the circumflex giving 'left dominance'. A 'balanced' circulation is seen when both right and left coronary arteries give rise to parallel posterior descending branches. The artery to the atrioventricular node arises from the dominant artery at the cardiac crux.  
Line 86: Line 87:


==The cardiac conduction system==
==The cardiac conduction system==
[[Image:Figure 10.jpg|thumb|300px|center|The cardiac conduction system. Normally, the insulating fibro-fatty tissue plane at the atrioventricular junction prevents atrial myocardium from contacting ventricular myocardium. The penetrating bundle is the only muscular bridge.]]
[[Image:Figure 10.svg|thumb|300px|right|'''Figure 10.'''<br>
The cardiac conduction system. Normally, the insulating fibro-fatty tissue plane at the atrioventricular junction prevents atrial myocardium from contacting ventricular myocardium. The penetrating bundle is the only muscular bridge.]]


The full complement of the histologically specialised tissues making the conduction system of the heart comprises the sinus node and the atrioventricular system (Figure 10). The latter is made up of the atrioventricular node, the penetrating atrioventricular bundle and the ventricular bundle branches. The geometry of the right atrium is such that it is made up of bands of muscle which separate the orifices of the great veins and the oval fossa. The spread of excitation from the sinus to the atrioventricular node has been shown to spread preferentially along these broad bands of ordinary atrial myocardium.
The full complement of the histologically specialised tissues making the conduction system of the heart comprises the sinus node and the atrioventricular system (Figure 10). The latter is made up of the atrioventricular node, the penetrating atrioventricular bundle and the ventricular bundle branches. The geometry of the right atrium is such that it is made up of bands of muscle which separate the orifices of the great veins and the oval fossa. The spread of excitation from the sinus to the atrioventricular node has been shown to spread preferentially along these broad bands of ordinary atrial myocardium.


==The sinus node==
==The sinus node==
[[Image:Figure 11.jpg|thumb|center|300px|'''A.''' The sinus node (dotted shape) is superimposed onto the terminal groove in this picture of the right atrium viewed from the right side. The arrows indicate the sectioning plane of the histological section shown in B.
[[Image:Figure 11.jpg|thumb|left|300px|'''Figure 11.'''<br>
'''A.''' The sinus node (dotted shape) is superimposed onto the terminal groove in this picture of the right atrium viewed from the right side. The arrows indicate the sectioning plane of the histological section shown in B.
<br>'''B.''' This section from an infant heart is stained in Masson’s trichrome stain that colours myocardium red and fibrous tissue blue. The sinus node is readily identifiable by its composition of small myocytes in a fibrous matrix.]]
<br>'''B.''' This section from an infant heart is stained in Masson’s trichrome stain that colours myocardium red and fibrous tissue blue. The sinus node is readily identifiable by its composition of small myocytes in a fibrous matrix.]]


Line 98: Line 101:


==The atrioventricular conduction system==
==The atrioventricular conduction system==
[[Image:Figure 12.jpg|thumb|300px|center|'''A.'''  This view of the right atrium and right ventricle shows the anterior and posterior borders of the triangle of Koch (broken lines) that mark location of the atrioventricular node and bundle (orange shapes). The arrows B, C, D indicate the cuts made through the conduction system as shown on the histologic sections.
[[Image:Figure 12.jpg|thumb|300px|left|'''Figure 12.'''<br>
'''A.'''  This view of the right atrium and right ventricle shows the anterior and posterior borders of the triangle of Koch (broken lines) that mark location of the atrioventricular node and bundle (orange shapes). The arrows B, C, D indicate the cuts made through the conduction system as shown on the histologic sections.
<br>'''B''', '''C''' and '''D''' are step sections stained with Masson’s trichrome technique and displayed in similar orientation tracing the atrioventicular conduction system from the AV node (AVN) that adjoins the central fibrous body (cfb), to the penetrating His bundle (H), and the branching bundle (BB) dividing into the left (LBB) and right (RBB) bundle branches.]]  
<br>'''B''', '''C''' and '''D''' are step sections stained with Masson’s trichrome technique and displayed in similar orientation tracing the atrioventicular conduction system from the AV node (AVN) that adjoins the central fibrous body (cfb), to the penetrating His bundle (H), and the branching bundle (BB) dividing into the left (LBB) and right (RBB) bundle branches.]]  


[[Image:Figure 13.jpg|thumb|center|This picture from Tawara’s monograph (1906) shows the tree-fascicular arrangement of the left bundle branch in man.  
[[Image:Figure 13.jpg|thumb|300px|right|'''Figure 13.'''<br>
This picture from Tawara’s monograph (1906) shows the tree-fascicular arrangement of the left bundle branch in man.  
(Tawara S 1906 Das Reizleitungssystem des Säugetierherzens. Eine Anatomisch-Histologische Studie Über das Atrioventrikularbündel und die Purkinjeschen Fäden. Gustav Fischer, Jena.)]]  
(Tawara S 1906 Das Reizleitungssystem des Säugetierherzens. Eine Anatomisch-Histologische Studie Über das Atrioventrikularbündel und die Purkinjeschen Fäden. Gustav Fischer, Jena.)]]  


Navigation menu