Grown-up Congenital Heart Disease (GUCH): Difference between revisions

Jump to navigation Jump to search
 
(3 intermediate revisions by the same user not shown)
Line 236: Line 236:
=== Treatment and outcome ===
=== Treatment and outcome ===
[[File:Figure 10. Schematic drawing showing surgical procedures for repair of coarctation of the aorta.png|thumb|left|Figure 10. Schematic drawing showing surgical procedures for repair of coarctation of the aorta. Left: resection with end-to-end anastomosis. Middle: dilating technique using a patch; this technique is used in coarctations involving a long segment of the aorta. Right: the subclavian flap aortoplasty, using the left subclavian artery.]]
[[File:Figure 10. Schematic drawing showing surgical procedures for repair of coarctation of the aorta.png|thumb|left|Figure 10. Schematic drawing showing surgical procedures for repair of coarctation of the aorta. Left: resection with end-to-end anastomosis. Middle: dilating technique using a patch; this technique is used in coarctations involving a long segment of the aorta. Right: the subclavian flap aortoplasty, using the left subclavian artery.]]
[[File:11. coarctatie repair2.PNG|thumb|right|Figure 11. Schematic drawing showing surgical procedures for repair of a coarctation of the aorta. Left: an interposition graft. Middle: the extended aortic arch repair. Right: the extra-anatomical bypass.]]
[[File:Figure 11. Schematic drawing showing surgical procedures for repair of a coarctation of the aorta.png|thumb|right|Figure 11. Schematic drawing showing surgical procedures for repair of a coarctation of the aorta. Left: an interposition graft. Middle: the extended aortic arch repair. Right: the extra-anatomical bypass.]]
<!--
<!--
{{multiple image
{{multiple image
Line 260: Line 260:
=== Introduction ===
=== Introduction ===
[[File:12. TGA.jpg|thumb|left|Figure 12: Schematic drawing showing transposition of the great arteries. The pulmonary artery is located above the left ventricle (LV) and the aorta is located above the right ventricle (RV).]]
[[File:12. TGA.jpg|thumb|left|Figure 12: Schematic drawing showing transposition of the great arteries. The pulmonary artery is located above the left ventricle (LV) and the aorta is located above the right ventricle (RV).]]
[[File:13. TGA.PNG|thumb|right|Figure 13. Schematic drawing of the circulation in transposition of the great arteries. Left: normal position of the great arteries with the pulmonary and systemic circulation serially connected. Right: transposition of the great arteries with a parallel circulation.]]
[[File:Figure 13. Schematic drawing of the circulation in transposition of the great arteries.png|thumb|right|Figure 13. Schematic drawing of the circulation in transposition of the great arteries. Left: normal position of the great arteries with the pulmonary and systemic circulation serially connected. Right: transposition of the great arteries with a parallel circulation.]]
Transposition of the great arteries (TGA) accounts for 5-8% of all congenital heart defects and occurs 2-3 times more frequently in males. TGA is best defined as a normal atrioventricular connection with an abnormal ventricular–arterial connection; the morphological left atrium is connected through the left ventricle with the pulmonary artery and the morphological right atrium through the right ventricle with the aorta. (Figure 12)The aorta is often located on the right side and in front of the pulmonary artery (D-TGA). In 70 percent there is an isolated form of TGA, in 30 percent the TGA is accompanied by other heart defects, like VSD or obstruction of the left ventricle outflow tract.
Transposition of the great arteries (TGA) accounts for 5-8% of all congenital heart defects and occurs 2-3 times more frequently in males. TGA is best defined as a normal atrioventricular connection with an abnormal ventricular–arterial connection; the morphological left atrium is connected through the left ventricle with the pulmonary artery and the morphological right atrium through the right ventricle with the aorta. (Figure 12)The aorta is often located on the right side and in front of the pulmonary artery (D-TGA). In 70 percent there is an isolated form of TGA, in 30 percent the TGA is accompanied by other heart defects, like VSD or obstruction of the left ventricle outflow tract.


Line 282: Line 282:
=== Congenitally corrected transposition of the great arteries ===
=== Congenitally corrected transposition of the great arteries ===
=== Introduction ===
=== Introduction ===
[[File:14. ccTGA.PNG|thumb|right|Figure 14. Congenitally corrected transposition of the great arteries. RA, right atrium. LA, left atrium. RV, right ventricle. LV, left ventricle. p, pulmonary artery. ao, aorta. tric, tricuspid valve.]]
[[File:Figure 14. Congenitally corrected transposition of the great arteries.png|thumb|right|Figure 14. Congenitally corrected transposition of the great arteries. RA, right atrium. LA, left atrium. RV, right ventricle. LV, left ventricle. p, pulmonary artery. ao, aorta. tric, tricuspid valve.]]
The congenitally corrected transposition of the great arteries (ccTGA) is characterized by a normal anatomical position of both atria, with an abnormal connection between the atria and the ventricles. The right atrium is connected with the left ventricle and the left atrium is connected with the right ventricle. (Figure 14) Furthermore the aorta arises from the right ventricle and the pulmonary artery from the left ventricle. There are, in conclusion, abnormal atrioventricular connections and abnormal ventricular-arterial connections present in ccTGA.  
The congenitally corrected transposition of the great arteries (ccTGA) is characterized by a normal anatomical position of both atria, with an abnormal connection between the atria and the ventricles. The right atrium is connected with the left ventricle and the left atrium is connected with the right ventricle. (Figure 14) Furthermore the aorta arises from the right ventricle and the pulmonary artery from the left ventricle. There are, in conclusion, abnormal atrioventricular connections and abnormal ventricular-arterial connections present in ccTGA.  
CcTGA is a very rare defect, accounting for about 1% of all congenital heart disease.
CcTGA is a very rare defect, accounting for about 1% of all congenital heart disease.
Line 484: Line 484:
=== Introduction ===
=== Introduction ===
[[File:20. Wilhelm Ebstein.jpg|thumb|left|Figure 20. Wilhelm Ebstein (1836 – 1912).]]
[[File:20. Wilhelm Ebstein.jpg|thumb|left|Figure 20. Wilhelm Ebstein (1836 – 1912).]]
[[File:21. Ebstein.PNG|thumb|right|Figure 21. Schematic drawing showing Ebstein’s anomaly of the tricuspid valve. Left: normal heart with openend right ventricle. Right: Ebstein’s anomaly with displacement of the septal and posterior tricuspid leaflet, leading to atrialisation of a significant part of the right ventricle.]]
[[File:Figure 21. Schematic drawing showing Ebstein’s anomaly of the tricuspid valve.png|thumb|right|Figure 21. Schematic drawing showing Ebstein’s anomaly of the tricuspid valve. Left: normal heart with openend right ventricle. Right: Ebstein’s anomaly with displacement of the septal and posterior tricuspid leaflet, leading to atrialisation of a significant part of the right ventricle.]]
Ebsteins anomaly, named after Wilhelm Ebstein (1836 – 1912) (Figure 20) is a congenital heart defect of the morphological tricuspid valve. The prevalence of Ebstein's anomaly is about 1 in 50.000 – 200.000 with a similar incidence in both males and females.
Ebsteins anomaly, named after Wilhelm Ebstein (1836 – 1912) (Figure 20) is a congenital heart defect of the morphological tricuspid valve. The prevalence of Ebstein's anomaly is about 1 in 50.000 – 200.000 with a similar incidence in both males and females.


401

edits

Navigation menu